ENVIRONMENTAL CHEMISTS

Date of Report: 08/20/02 Date Received: 08/08/02

Project: Metro KC Composite, PO#M68504

Date Extracted: 08/14/02 Date Analyzed: 08/14/02

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLE FOR TOTAL METALS BY INDUCTIVELY COUPLED PLASMA (ICP) (METHOD 6010)

Results Reported as mg/L (ppm)

Sample ID	Chromiu	m Copper	Nickel	Zinc
Laboratory ID				
M 68504	0.35	0.33	0.22	< 0.05
208033-01				
		国债19代数利益		
3/1 1 101 1		0.05	0.05	-0.05
Method Blank	< 0.05	< 0.05	< 0.05	< 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 08/20/02 Date Received: 08/08/02

Project: Metro KC Composite, PO#M68504

QUALITY ASSURANCE RESULTS FROM TOTAL METALS BY INDUCTIVELY COUPLED PLASMA (ICP) (METHOD 6010)

Laboratory Code: 207152-01 (Duplicate)

					Relative	
		Reporting	Sample	Duplicat	te Percent	Acceptance
Analyte		Units	Result	Result	Difference	Criteria
Chromiu	m	mg/L (ppm)	0.23	0.25	8	0-20
Copper		mg/L (ppm)	0.17	0.21	21 a	0-20
Nickel		mg/L (ppm)	0.12	0.14	15	0-20
Zinc		mg/L (ppm)	< 0.05	< 0.05	nm	0-20

Laboratory Code: 207152-01 (Matrix Spike)

	Reporting	Spike	Sample	% Recov	ery Acceptance
Analyte	Units	Level	Result	MS	Criteria
Chromium	mg/L (ppm)	2	0.23	89	80-120
Copper	mg/L (ppm)	2	0.17	88	80-120
Nickel	mg/L (ppm)	4	0.12	84	80-120
Zinc	mg/L (ppm)	2	< 0.05	90	80-120

Laboratory Code: Laboratory Control Sample

	Reporting	Spike %	Recov	ery % Recov	ery Acceptance	e RPD
Analyte	Units	Level	LCS	LCSI) Criteria	(Limit 20)
Chromium	mg/L (ppm)	2	89	90	80-120	1
Copper	mg/L (ppm)	2	89	90	80-120	$(1) \cdot (1 \cdot 1) $
Nickel	mg/L (ppm)	4	86	87	80-120	1
Zinc	mg/L (ppm)	2	93	92	80-120	43.5 (1.1 (1.1 (1.1 (1.1 (1.1 (1.1 (1.1 (1

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

August 20, 2002

DUPLICATE COPY

INVOICE #02ACU0820-1

Accounts Payable Alaskan Copper Works 628 South Hanford Seattle, WA 98134

RE: Project Metro KC Composite, PO#M68504 - Results of testing requested by Gerry Thompson for material submitted on August 8, 2002.

FEDERAL TAX ID #(b) (6)

208033

ME 8/8/02 AI,

SAMPLE CHAIN OF CUSTODY

	SAMP	SAMPLERS (Signature) Page #of																				
Send Report to JElaco / Mangason					Me To									TURNAROUND TIME								
Company ALASKAN Copper works				PROJE	PROJECT NAME/NO. PO# METRO KC Composite M68504								1] Standard (2 Weeks) HROSH									
Send Report To DERACO Thompson Company ALASKAN Copper works Address 628 S. Hardent 85				ME	METRO KC Composite m68504								Rush charges authorized by:									
				IREMA	REMARKS									SAMPLE DISPOSAL								
City, State, ZIP	9	VI 1	000	- 0	Y									☐ Dispose after 30 days ☐ Return samples								
City, State, ZIP Section Phone #206- 382-88.	Fax:	# 20C 3C	82-430	8 Pu	408 A	A)	<i></i>									☐ Will call with instructions						
ſ <u> </u>	1				·	Т				ANA	LYS	ES R	EQU	JEST	ED	M-1-1-1		T			\neg	
iji s			2				e	B			LYSES REQUESTI											
A A A						esel	olin	802]	826	,82,		101						8			1	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Typ	e # of	TPH-Diesel	PPH-Gasoline	STEX by 8021B	VOCs by 8260	SVOCs by 8270	HFS	3	`						Not	tes		
	1.2					TP	'PH.	rex	,00 ,00	8		Ö						İ			ľ	
		~//					1	B	^	S		0				<u> </u>	<u> </u>	<u> </u>				
m 68504	101	18/02	12:30	HO	1					1												
	- 																					
						-										<u> </u>	_					
· ·	 													†								
						+	}_							-		├	┼	-			-	
					1/	$oldsymbol{\perp}$										_	_	ļ				
	-													1				l				
				//	_	╁	 	-						-	-	 	┼	+				
				/				<u> </u>			<u> </u>			<u></u>			<u> </u>	<u> </u>				
Friedman & Bruya, Inc.	\wedge 4	MSIGN	ATURE		PRINTNAME					COMPA				<u> </u>	T	DATE		TIMI	E			
3012 16th Avenue West	Relincti	Mes V		(school Thompson					Ach				3	862	: /	1723	}				
Seattle, WA 98119-2029	Received	by: //			1 /	L.n.		0				T	p 12	1	200		7			:08	·	
Ph. (206) 285-8282	Relinqui	shed by:			Laura 6	toupe	Y						1-12	++	ric	L .P	\dashv		+	-0	m	
Fax (206) 283-5044	Received by:																+		+			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

August 20, 2002

Gerry Thompson, Project Manager Alaskan Copper Works 628 South Hanford Seattle, WA 98134

Dear Mr. Thompson:

Included are the results from the testing of material submitted on August 8, 2002 from your Metro KC Composite, PO#M68504 project. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures ACU0820R.DOC